Two-scale nature of electron solitary waves at the dayside magnetopause

D. B. Graham, Yu. V. Khotyaintsev, A. Vaivads, and M. André

Swedish Institute of Space Physics, Uppsala, Sweden

Electron solitary waves

- Debye scale dipolar electric fields parallel to B.
- Can be produced by Buneman, bump-on-tail, or bistreaming instabilities.
- They are often associated with reconnection separatrices, current sheets, and electron beams.

[Matsumoto et al., 1994].

5 March 2007 – Cluster 2

Internal burst mode.

- Asymmetric reconnection observed.
- Two distinct ESW time scales present.
- ESWs are observed near current sheet, suggesting Buneman instability.
- Bistreaming instability may produce the fast ESWs.
- Time delays between different probe combinations are clearly seen.

Size and speeds of electron holes

- ESW speeds and lengths estimated from time delays between probes.
- ESWs move parallel to B. Electric field diverges.
- V ~ 50 km/s for slow holes; V ~ 600 km/s for fast holes.
- Length scale is $I \sim 6\lambda_D$ for both fast and slow electron holes.
- Maximum ESW potentials are $V_0 < 1 V$.

22 April 2008 – Cluster 3,4

Blue shading indicates EFW's internal burst mode interval.

- Partial magnetopause crossing.
- Northward ion flow.
- Mixing of MS and SH electron observed.
- Most intense electric fields are observed at the magnetopause.

ESWs and electron distributions

- Fast and slow ESWs are observed close to the magnetopause.
- Assuming I = 6λ_D, speeds are:
 v ~ 400-1400 km/s and v >~ 4000km/s.

Green solid – magnetospheric $f_e(E)$ Green dashed – magnetosheath $f_e(E)$

Electron distributions over EFW's internal burst mode interval. Most ESWs correspond to time of (d).

05 January 2003

- Fast and slow ESWs observed together; fast and slow ESWs do not coalesce.
- Electron distribution suggests bistreaming instability.
- Assuming I = $6\lambda_D$, speeds are v ~ 300 km/s and v ~ 3000 km/s.

Discussion

- For event eφ/k_BT_e << 1 → narrow range of trapped electron speeds.
- Trapped electrons of fast and slow ESWs don't overlap → fast and slow ESWs do not coalesce.
- For the Buneman instability $v_{\rm ph} = (m_e/2m_i)^{1/3}v_d/2$ We calculate ESW speeds 130, 320, and 290 km/s, consistent with slow ESWs.
- Electron distributions are consistent with the bistreaming instability generating fast ESWs.
- ESW speeds are too small for bump-on-tail instabilities.

Conclusions

- Fast and slow ESWs associated with asymmetric reconnection are observed → multiple instabilities in the same region.
- Slow ESW speeds are consistent with the Buneman instability.
- Fast ESWs are consistent with electron bistreaming instabilities.